If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12^2+9^2=c^2
We move all terms to the left:
12^2+9^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+225=0
a = -1; b = 0; c = +225;
Δ = b2-4ac
Δ = 02-4·(-1)·225
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*-1}=\frac{-30}{-2} =+15 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*-1}=\frac{30}{-2} =-15 $
| x+7=9-x;1 | | 14-x=-11 | | w-5/6=3/8 | | x=12-2 | | 16^2+12^2=c^2 | | 9-9x=12x | | 27=-3u-5u-27 | | (a)/(-6)+8=12 | | 9^2+b^2=10^2 | | 8^2+b^2=9^2 | | m-6÷4=15 | | 32.67=6g+3.93 | | (x+5)(2x-4)=120 | | 6^2+b^2=7^2 | | 1/3*f=2/9 | | 6^2+b^2=8^2 | | 3^2+b^2=8^2 | | 32.24=7g+3.65 | | 4(x=12)-5=79 | | 7^2+b^2=8^2 | | 75^2+b^2=85^2 | | 11.75=2g+3.51 | | 18^2+b^2=82^2 | | 18=6/7w | | 24^2+b^2=26 | | -4(r+2)=-70 | | 77^2+b^2=85^2 | | 7.3y-5.18=51.0 | | 266=32-u | | 89-w=214 | | -5(r+8)=-77 | | 4/r=7/5 |